更新時間:2014-04-24
瀏覽次數:2041
季曉春1,王建華2,嵇保健3 曹武2,劉建春1
(1. 安科瑞電氣股份有限公司,上海市,201801
2. 江蘇省智能電網技術與裝備重點實驗室,東南大學電氣工程學院,江蘇省 南京市 210096
3. 南京工業大學自動化與電氣工程學院,江蘇省 南京市210009)
Three Phase Shunt APF-STATCOM Harmonic, Unbalance Load and Reactive Current Compound Control Strategy in smart Distributed GridJI Xiaochun1, WANG Jianhua2,JI Baojian3, Cai Wu2, JIANG Long1, Zhou Zhong
Abstract: Based on compound power quality concept, this paper proposed a compound harmonic, negative and reactive current compensation strategy for harmonic current, load imbalance and low power factor issues in smart distributed grid. Key factors are presented in detail. Corresponding three phase four line APF-STATCOM simulation and experimental tests and field operation results verify the compound control and compensation concept.
Key words: Smart distributed grid;active power filter(APF); static synchronous compensator(STATCOM);harmonic;unbalanced load;reactive;compound control
摘要:基于電能質量復合控制思想,針對智能配電網中諧波電流、負載不平衡、功率因數較低問題,給出一種諧波、負序及無功電流復合補償策略,并給出關鍵參數設計方法。相關APF-STATCOM仿真、實驗驗證及產品現場運行實測結果驗證了復合控制思想及補償策略正確性及可行性。
關鍵詞:智能配電網;有源電力濾波器;靜止同步補償器;不平衡負載
近年來,出于節能環保的考慮,配電網終端中電力電子變換裝置應用越來越廣泛,如照明、辦公、空調、電梯等相關,但這類非線性電能變換裝置在改善用戶端電能質量同時,往往誘發配電網側諧波及無功電流問題,線損、中線及變壓器過熱、電表計量不準,甚至保護誤動作等現象時有發生。傳統無源濾波及投切電容器補償盡管能夠解決上述問題,且成本較低,但無法實時連續調節,存在過補償、無功倒送甚至誘發配電網諧振可能性[1-3]。
為保障智能配電網終端用戶高品質定制電力供應,隨著瞬時功率理論及電力電子器件的發展,取代無源濾波及電容器無功補償裝置,其主電路拓撲結構及設計、諧波電流檢測、補償方法、控制及調制策略,以及啟動特性均是業界研究及工業應用的持續熱點話題[2-6]。
由于如今智能配電網中電能質量問題已經不再是一個單一的問題,而是一個非常復雜的系統問題。如圖1所示,某公用設施配電系統中同時存在諧波電流、負載不平衡及功率因數較低等問題。電能質量復合控制技術逐漸被學術界及工業界提上研究日程[7-8]。
圖1 實際配電網電能質量問題
Fig. 1 Power quality issue in a real distributed grid
本文研究了智能配電網環境下,同時面對時變諧波電流、不平衡負載及無功問題,給出一種諧波、負序和無功電流復合補償策略,及其關鍵參數設計方法。相關仿真、實驗驗證及產品現場運行實測結果驗證了該控制策略的正確性及可行性。
APF-STATCOM電路結構及工作機理
圖2 并聯APF-STATCOM框圖
Fig. 2 An APF-STATCOM diagram
如圖2所示,該并聯APF-STATCOM采用兩電平三相四橋臂電壓源逆變器拓撲,其中前三橋臂實現諧波及無功補償,第四橋臂獨立用于控制中線電流。這是由于三相四線制系統中,當負載不平衡時,中線往往流過較大零序電流,其不同于三相三線制系統。因此,增加與前三橋臂解耦控制的第四橋臂提供零序電流通路。此時APF-STATCOM產生一個與負載電流iL,abc中諧波、基波負序和零序分量之和相反的補償電流iC,abc,使得電源電流iS,abc僅提供負載電流基波正序分量,確保源輸出對稱三相電流并提高功率因數。
其中中線電流分離檢測、鎖相環、諧波電流檢測、直流電壓控制、電流控制及PWM調制是實現高性能APF-STATCOM的關鍵。鎖相環、直流電壓控制等與三相三線制系統相同,在此不作詳細介紹。
關鍵問題分析
1. 第四橋臂中線電流分離檢測及控制
考慮到不平衡的三相四線制電路中的負載電流iL,abc所包含的零序分量iN相等,均為
(1)
如圖2所示,此時中線電流采樣值iN,與中線零序電流分量補償指令iNref一并作為第四橋臂電流控制器輸入,通過PI調節器得到調制信號獲得第四橋臂開關信號。
同時有,
(2)
(3)
(4)
式中,僅含正序分量及負序分量,便于后續采用三相三線系統中ip-iq諧波電流檢測算法。
2. 諧波電流檢測
圖3 ?用d-q變換檢測諧波的原理圖
Fig. 3 The schematic diagram of the harmonics detecting method based on d-q rotating coordination transformation
傳統基于p-q瞬時無功功率理論檢測諧波電流方法受電壓畸變及不對稱影響較大,實際場合并不適用[9]。實際場合多采用加入鎖相環PLL電路的ip-iq瞬時無功功率理論檢測方法,具體如圖3所示,相關變換為
(5)
(6)
提取不含零序分量的電流 ,通過Park變換,將基波分量在d-q-0 坐標中變換到0Hz處(或先經 變換再經dq變換亦可),用低通濾波器提取基波正序分量即可[5]。
圖2中直流電壓調節器輸出值生成部分有功電流指令,用于穩定直流母線電壓并補償功率損耗部分。若為提高功率因數,可以同時補償無功電流,此時基波負序無功電流指令值設定為0。zui后用負載電流減去基波電流正序分量,即可得到補償負載電流中諧波分量和因負載不平衡導致的電流負序分量、零序分量的指令電流量以及無功電流正序分量的指令電流,實現APF-STATCOM功能。
3. 電流PR諧振控制器設計
由于APF-STATCOM跟蹤的電流指令是多種頻率正弦量的疊加信號,傳統SPWM調制采用PI控制必定存在穩態誤差和相位偏移,補償效果不佳,往往采用電流滯環調制,但變頻調制不可避免帶來濾波器設計及噪聲控制問題[9]。
通過旋轉坐標變換可以將正弦信號變為直流信號,從而在新的坐標系下采用PI控制器。但在APF-STATCOM控制領域,必須在多個頻率下進行坐標變換,計算復雜,不利于實際應用。近年來,針對正弦信號的提出的PR控制器,在可以避免旋轉坐標變換,計算量大大降低的同時,獲得與同步坐標系下的PI控制器相同控制效果:能無穩態誤差地跟蹤特定頻率的正弦信號,更重要的是可以對頻率的諧波進行有選擇地補償。
(7)
(8)
式中 為諧振頻率。
由式(7)可知,對直流系統而言,由于積分環節的存在,0 Hz處的增益*,從而系統可以實現無靜差調節;對于交流系統,50Hz及其倍數次諧波,式(7)增益有限,式(8)由于諧振環節的引入,在相應頻段有較高的增益。若跟蹤的目標為基波 rad/s;若需補償較高幅值的5次諧波,則有 rad/s。通常補償諧波次數zui高至20或50次,尤其是幅值較高的奇次諧波。因此有,
(9)
圖4所示為基波及三、五、七次諧波補償用PR諧振控制器波特圖,可以看出在相應頻段電流控制器增益較高,有助于減小跟蹤誤差。
圖4 ?PR諧振控制器波特圖
Fig. 4 PR controller bode plots
仿真及實驗驗證
為驗證所提出的諧波、負序及無功電流復合補償策略,本文在Matlab Simulink環境下建立仿真平臺。相關參數設置如下:輸入三相四線制電壓380V/50Hz,三相二極管整流器非線性負載直流側濾波電感1mH,電阻3.2Ω,三相二極管整流器交流電抗0.4mH,APF-STATCOM并網電抗0.4mH,直流側支撐電容4000μF,交流側不平衡RL負載星型聯接,電感值均為8mH,電阻值分別為5Ω,50Ω,500Ω,開關頻率10kHz。
圖5所示以A相為例,表明補償后APF-STATCOM注入電流很好地抵消了負載電流的諧波電流,使得電網電流正弦化較好,實現了APF諧波補償功能;同時電網電流與電網電壓同頻同相,功率因數接近于1,實現了STATCOM無功補償功能。圖6給出三相補償結果,對稱三相電流波形驗證其具有較好抑制不平衡負載能力。
圖5 A相補償后電壓電流波形(從上到下依次是電網電壓/V、電網電流/A、補償電流/A、負載電流/A,時間軸t/s)
Fig. 5 Phase A wave forms after compensation
圖6 補償后電網三相電壓電流波形(從上到下依次是三相電網電壓/V、三相電網電流/A,時間軸t/s)
Fig. 6 Three phase wave forms after compensation
圖7進一步給出直流側母線電壓波形,可以看出APF-STATCOM在完成諧波補償后,母線電壓略有波動,但穩定在750V設定值附近。
圖7 直流側母線電壓/V(時間軸t/s)
Fig. 7 Dc link bus voltage
圖8及圖9進一步給出工業樣機內部測試結果,受實驗條件限制,此時負載僅為整流性非線性負載,故負載電流及補償電流與仿真有所區別,其主要體現了APF補償功能。圖10給出產品在現場投運結果,與圖1相比,中性線電流由37A減小至,三相電流THDzui大不超過3.4%,且對稱性較好,充分驗證了APF-STATCOM復合補償功能。
圖8 A相及B相補償后網側電流及負載電流(從上到下依次是A相電壓、B相電流、A相負載電流、B相負載電流)
Fig. 9 Phase A &B grid & load current after compensation
圖9 A相補償后網側電流、發出反向諧波電流及負載電流
Fig. 9 Phase A grid, inverse harmonic current & load current after compensation
圖10 實際現場APF-STATCOM補償后結果
Fig. 10 APF-STATCOM Compensation effects in practice
結論語
基于電能質量復合控制思想,針對智能配電網中諧波電流、負載不平衡、功率因數較低問題,提出一種諧波、負序及無功電流復合補償策略。
仿真、工程樣機試驗及現場運行結果驗證了基于該策略所實現的APF-STATCOM復合補償功能。
文章來源:《電氣應用》2014年 第6期
參考文獻
1.技術監督局.中國標準GB/T 14549-93電能質量公用電網諧波[S].北京:中國標準出版社,1994.
2.赤木泰文(Hirofumi Akagi)等(徐政 譯).瞬時功率理論及其在電力調節中的應用[J].北京:機械工業出版社,2009.
3.王兆安,楊君,劉進軍.諧波抑制和無功功率補償。機械工業出版社,1998.
4.馬莉,周景海,呂征宇,錢照明.一種基于dq 變換的改進型諧波檢測方案的研究[J].中國電機工程學報,2000,20(10):55-63.
Ma Li,Zhou Jinghai,LüZhengyu,Qian Zhaoming. An improved harmonic detecting approach based on dq rotating coordination transformation[J].Proceedings of the CSEE,2000,20(10):55-63(in Chinese).
Zeliang Shu, Yuhua Guo, and Jisan Lian. Steady-state and dynamic study of active power filter with efficient FPGA-based control algorithm [J].IEEE Transactions on Industrial Electronics,2008,55(4):1527- 1536.
5.趙國鵬,林少伯,韓民曉.基于補償特性的并聯型有源電力濾波器直流側電壓取值分析[J].電力系統自動化,2012,36(14):83-87.
Zhao Guopeng,Lin Shaobo,Han Minxiao.Design of voltage in DC link of parallel-type active power filter based on compensation characteristics[J].Automation of Electric Power Systems,2012,36(14):83-87 (in Chinese)
6.單任仲.并聯型復合電能質量擾動及補償的控制方法與實現 [D].博士學位論文,北京:華北電力大學,2010.
7.劉海波,毛承雄,陸繼明,王丹.四橋臂三相四線制并聯型APF—STATCOM [J].電力系統保護與控制,2010,38(16):11-17.
Liu Haibo,Mao Chengxiong, Lu Jiming,Wang Dan.Three-phase four-wire shunt APF-STATCOM using a four-leg converter [J].Power System Protection and Control,2010,38(16):11-17 (in Chinese).
8.曹武.諧波獨立補償有源濾器關鍵技術研究[D].碩士學位論文,南京:東南大學,2011